Axion Solar Telescope Activities: CAST and future prospects

Michael Pivovaroff, X-ray Science & Technology Group Leader
Julia Vogel, Postdoctoral Fellow

9 February 2011 Office of High Energy Physics Site Visit

Lawrence Livermore National Laboratory

The CERN Axion Solar Telescope (CAST)

- An experimental search for axions created in the Solar interior
- International collaboration started in 1999;
 - 21 institutions from 11 countries, approximately 70 PhD scientists
 - Thesis project for 10 PhD students
- LLNL joins in 2005
- Current science program approved by CERN runs through mid-2011

What is an axion? (in 70 words or less)

- An axion is an extremely weakly-coupled fundamental pseudoscalar particle (spin-parity, $J^{\pi} = 0^{-}$)
 - Light, neutral pseudo-Goldstone boson that couples to two photons
 - Potential dark matter candidate

 - Astrophysical constraint g_{aγ} ≤ 10⁻¹⁰ GeV⁻¹
- Results from a possible solution to the Strong CP problem
- Dubbed the axion by Frank Wilczek
 - "I named them after a laundry detergent, since they clean up a long standing problem in theoretical physics."

Wilczek *PRL* 40:279 (1978)

Where to look for axions?

- Galactic/remnant axions
 - → Haloscopes (ADMX)
- Laboratory axions
 - → Shining-Lightthrough-Walls (OSQAR, LIPSS, ALPS)
 - → Polarization (PVLAS)
- Solar axions
 - → Crystals (SOLAX,COSME)
 - → Helioscopes (CAST)

The axion helioscope—basic idea

Pierre Sikivie first proposed the "axion heliscope"

Sikivie *PRL* 51:1415 (1983)

$$\gamma + \gamma^* \rightarrow a$$

- keV x-rays in Stellar core converted into axions via Primakoff effect
- Use a strong, laboratory-based magnetic field to reconvert the axions back into x-rays

Helioscope conversion details

Conversion probability

$$P_{a\rightarrow\gamma} = \left(\frac{Bg_{a\gamma}}{2}\right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2} \cos(qL)\right]$$

Momentum transfer

$$q = \left| \frac{m_{\gamma}^2 - m_a^2}{2E_a} \right|$$

Coherence when $qL/2 < \pi$

 Van Bibber recognized using a conversion gas would maintain coherence over a long magnetic field, and allow a search for higher masses

Van Bibber et al. PhysRevD 39:2089 (1989)

LLNL-PRES-470254

CAST instrumentation

Cern Axion Solar Telescope

CAST instrumentation

Magnet Feed Box

Sunset detectors (both bores)

Time projection chamber (2003-2006) Micromegas (2007 onwards)

Sunrise detectors

1 bore: X-ray CCD + telescope

1 bore: Micromegas detectors

CAST physics program

- CAST Phase I
 - Vacuum operation, completed during 2003 2004
 - Sensitivity up to m_a ≈ 0.02 eV
- CAST Phase IIa
 - ⁴He gas in bore, completed during 2005 2006
 - 160 different pressure settings, up to 13.4 mbar
 - $0.02 < m_a < 0.39 \text{ eV}$
- CAST Phase IIb
 - ³He gas in bore, started in late 2007
 - Several hundred pressure settings, up to 120 mbar
 - $0.02 < m_a < 1.2 \text{ eV}$
- Visible and high-energy axions (not discussed today)

CAST Phase I results

Andriamonje et al. *JCAP* 0704:010, (2007)

Phase I: (2003 – 2004) vacuum operation

$$g_{a\gamma\gamma} < 8.8 \times 10^{-11} \text{GeV}^{-1}$$
 (95% CL)
for $m_a < 0.02 \text{eV}$

- The best experimental limit to date over a large mass range
- Supersedes the best astrophysical limit from Globular cluster HB stars.

CAST Phase IIa results, using ⁴He

Arik et al. JCAP (2009) 008

Phase IIa: (2005 – 2006) ⁴He operation

 Pressure settings up to 13.4 mbar (160 steps)

$$g_{a\gamma\gamma} < 2.17 \times 10^{-10} \,\text{GeV}^{-1}$$
 (95% CL)

for
$$0.02 \text{eV} < m_a < 0.39 \text{eV}$$

 Starts to exclude interesting QCD model parameter space

LLNL contributions to CAST

 LLNL's participation funded through two different LDRD programs

2004-2007; Novel x-ray optics

- Design, built and calibrated x-ray optic
- Arranged loan of He-3 for phase II

2008-2012; Rare event detection

- Scientific leadership
- Hired Julia Vogel, CAST PhD student
- Second CAST PhD student hire likely in later 2011
- 2 peer reviewed papers out; several in progress

Next Generation Axion Helioscope

- CAST has enough sensitivity to search a narrow region of "traditional" QCD axion phase-space
- Limits set by experimental parameters

$$g_{a\gamma} \propto \frac{b^{1/8}}{t^{1/8} (B \times L)^{1/2} A^{1/2}}$$

b = background B = magnetic field L = magnet length t = observation time A = magnet cross-sectional area

- A carefully designed new experiment could:
 - Dramatically improve sensitivity for higher-mass axion phase space, complimentary to microwave cavity searches
 - Provide data to challenge and test a growing number of models, motivated by astrophysics, that invoke axion-like particles (ALPs)

Experimental requirements for a new program

- 3 hardware components drive the sensitivity of an axion helioscope: magnet, detectors and optics
- Recast coupling constant dependence to show how each element influence overall sensitivity

Magnet is the most important lever

Factor	NGAH vs CAST	Improvement in g _{aγ} ⁴
Detector	Background 20× lower	4.5
Optics	Optics 2×more efficient	1.4
Observation time	3 years,7 hr days instead of 2 years, 1.5 hr /day	2.6
Magnet	Field 50% lower, magnet 2×longer, 1000×more area	1000

Potential reach of a new program

New collaboration

- Builds on CAST team and will require participation and support from Europe, US and CERN
- Hundred million dollar class experiment
- Magnet: ATLAS magnet is point-of-departure (~\$25 – 50M)
 - CERN
 - US: Fermilab? LBNL?
- Civil & project engineering: Dedicated facility and building (~\$15 25M)
 - US: LLNL
- X-ray optics
 - US: Columbia U., LLNL, NASA?
 - MPE/Germany
- Detectors
 - CEA Saclay, U. Zaragoza (Spain)
- Theory
 - US and Europe

Cross section of the magnet

Improved background performance for Micromegas

LLNL-PRES-470254

X-ray optics

- During the last four decades, the x-ray astronomy community has devoted billions of dollars to develop reflective xray optics
- Innovations include:
 - Nested designs (so called Wolter telescopes)
 - Low-cost substrates
 - Highly reflective coatings
- Although NGAH will require fabrication of dedicated optics, it will be crucial to leverage as much infrastructure as possible to minimize cost and risks

XMM-Newton telescope with 56 nested shells

One possibility: thermally-formed glass substrates

- NASA is currently building NuSTAR, a hard x-ray telescope, using thermally formed glass substrates
- Optics developed by Columbia U. (PI institute), LLNL and others during last decade
- The specialized tooling to shape the substrates and assemble the optics will be available after NuSTAR is launched in 2012
- Hardware can be easily configured to make optics with a variety of designs and sizes
 - LLNL and Columbia already in discussions

Plans and timelines

- Socialization with European and US federal agencies, CERN and ASPERA starts in 2010
- Magnet studies
 - Build on work already begun at CERN

- Near-term R&D
 - Optics
 - Detectors
- Near-term engineering
 - Sufficient rigor to develop a realistic and safe design for scientific evaluation and CD0

